
INTEK Jurnal Penelitian. 2020, Volume 7 (1): 26-31 26

DOI : http://dx.doi.org/10.31963/intek.v7i1.1536

Improving Speed Performance of Select Random Query in
SQL Database

Abstract— Select random is a query in a SQL database that can
retrieve data randomly from a table. Select random is often used
to present data in various applications such as websites, data
mining and others. Unfortunately, ordinary select random query
is inefficient in terms of processing time if used in large table.
This paper, tries to solve this problem by proposing two
optimized methods of select random query, namely the Small
Percentage Order by Rand (SPO-Rand) and the Filtered Column
Order by Rand (FCO-Rand). The two proposed methods are
then compared in terms of processing speed with a standard
Select Random query or Normal Order by Rand (NO-Rand). The
scenario of the experiment is to collect five random data from
several data sets, ranging from 10.000 to 200.000 data. Based on
the results of experiments that have been conducted, the
proposed FCO-Rand method obtained the best process speed
with 0.074 seconds at 200.000 data, followed by SPO-Rand with
0.265 seconds. These result are much faster than the standard
random select method (NO-Rand) which takes up to 7,035
seconds for the same task.

Keywords— SQL database; select random; SQL query speed;
SQL optimization; relational database; data manipulation language

I. Introduction
Database is an important component in information

technology to store various types of data with various
purposes such as supporting web applications, mobile
and data mining [1]. One of database type that is widely
used currently is Structured Query Language (SQL)
database [2], [3]. This database has a component called
Data Manipulation Language (DML) that can be used to
retrieve data easily [4].

One of the queries in DML SQL that can be used to
retrieve data is a Select Random query. This is the query
used to retrieve data randomly from a table in an SQL
database. Based on its function, Select Random query is

widely used in various applications such as article
recommendations in website [5], random sample data
selection in data mining [6], big data [7] and machine
learning. However, the standard Select Random query in
SQL has a disadvantage in terms of speed and time
processing when used in tables with large data rows [8]
or also called big tables. Research to speed up the
process of Select Random is strongly needed.

Several researches have been conducted to solve the
problem of slow processing time in SQL. Research [8]
proposes query optimization rules to speed up SQL
process. This research concludes that query speed does
not only depend on infrastructure but also query
optimization. The same concept is carried out by
research [4] which also tries to optimize the query by
using index and query reducing method. Research [4]
concluded that the use of indexes makes queries work
faster. The disadvantage of this research is that it really
depends on index which is not always available in every
table, in several cases it needs to be created first.

Other SQL performance optimization approach is
proposed by research [9]. This research proposes query
normalization method by replacing (*), all column
statement, in every query to targeted unique column.
Research [9] claimed that the proposed method can work
faster than a normal query. The query normalization
method is also conducted by research [1] and [10] to
fasten the process of a query by utilizes the ordering /
sequence concept. The results of these studies are very
good to retrieve general data collection, but further

Muhammad Nur Yasir Utomo1,a, Alvian Bastian2,b and Anggun Winursito3,c
1,2 Department of Electrical Engineering, Politeknik Negeri Ujung Pandang, Makassar

3 Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada, Yogyakarta
a yasirutomo@poliupg.ac.id

b alvianbastian@poliupg.ac.id
c anggun.winursito@mail.ugm.ac.id



INTEK Jurnal Penelitian. 2020, Volume 7 (1): 26-31 27

DOI : http://dx.doi.org/10.31963/intek.v7i1.1536

research is still needed for implementation in the case of
random data collection.

Researches that have been described show that SQL
query optimization can be done in several approaches
such as query normalization and column specifications.
This research, utilizing those approaches to propose two
methods of query optimization for Select Random. The
first method works with a schema to reduce the data that
has to be scrambled and the second method works with
randomization based on unique column filtering.

This paper is organized as follows. Section 1 explains
the research objectives and studies related to SQL
database queries. Section 2 explains the proposed
methods of optimizing Select Random query in SQL
database including the steps, comparison scenarios of
each method and how the methods are evaluated. Section
3 explains the results and analysis of research
experiments. Finally, section 4 concludes the result of
this research.

II. Research Methodology
There are three main stages in this study, namely the

collection of experimental data, experiments of proposed
methods and evaluation of experimental results. These
stages are described as follows:

A. Experimental Data and Setup
Experimental data used in this research came from

address information portal called IDalamat.com. This
portal has address data for various places in Indonesia.
The total address data that can be used as experimental
data is 200.000 address data. These data are stored in a
table that has 23 fields / columns such as id, location
name, category, phone number, description, coordinates
etc.

All data that becomes experimental data is stored in a
MySQL database. This MySQL database is installed in a
Personal Computer (PC) with an Intel Core i5 processor,
8GB of RAM and uses Windows 10 operating system.
Examples of experimental data are shown in Figure 1
below:

Figure 1. Examples of Experimental Data

B. Select Random Methods
Experiments in this study were conducted using three

different Select Random query methods. Each method
used can be explained as follows:

1. Normal Order by Rand (NO-Rand)

Normal Order by Rand (NO-Rand) method is a
standard form of random data query in SQL that use
ORDER BY RAND command in SQL without any
modification and additions. Because its simplicity, this
query is also the most commonly used method for
random data retrieval. Example of Normal Order by
Rand query is shown as follows:

SELECT * FROM table_name ORDER BY RAND()
LIMIT 5;

The query above works by creating a random
fragment value for each row of data in a table, it then
sort the data based on random fragment values that have
been created. Finally, the query display five data in
accordance with the defined “LIMIT 5”.

Normal Order by Rand method does not have to have
an auto_increment type of column in the table so it is
flexible. It also easy to remember. However, this query
also has disadvantage, this method is very dependent on
the speed of making random fragment value for each
row. The greater the data and the more fields it has will
make NO-Rand method query become slower.



INTEK Jurnal Penelitian. 2020, Volume 7 (1): 26-31 28

DOI : http://dx.doi.org/10.31963/intek.v7i1.1536

2. Small Percentage Order by Rand (SPO-Rand)

Small Percentage Order by Rand method is a query
that performs random data retrieval by reducing the
percentage of data that must be scrambled from all
existing data rows. This method eliminates a large
amount of data and leaves a small percentage of it to be
scramble. The elimination process conducted randomly
and the size of eliminated data is depend on the target
number of data that user want to retrieve. For example,
the following is a random query using SPO-Rand:

SELECT * FROM table_name WHERE
RAND()<(SELECT ((5/COUNT(*))*10) FROM
table_name) ORDER BY RAND() LIMIT 5;

Above query retrieves five random data from the
reduced data set using the WHERE RAND () query. The
percentage of data reduced is based on the random
fragment value of each data row, if the data fragment
value is greater than the defined limit then the data will
be eliminated. The limit of the fragment value itself is
made by the following equation:

(1)

For example the data to be taken randomly is 5 data
from 200,000 (200K) data, the limit value of the
fragment is (5/200k)*10=0.00025. This value becomes
the basis to eliminate data with greater fragment value.
In the end, only a small amount of data is randomized,
so the query can work faster.

3. Filtered Column Order by Rand (FCO-Rand)

FCO-Rand method is a method that works with the
same concept as select random in the first method, the
difference is the random process is limited to only one
column. This column is selected based on its type. It has
to be primary key and auto_increment type of
column.

The random process that only applies to specific
fields makes the query does not need to calculate and
consider fragment value for other column, thus making
random query can work faster. An example of FCO-
Rand query is shown as follows:

SELECT * FROM table_name WHERE id IN
(SELECT id FROM (SELECT id FROM
table_name ORDER BY RAND() LIMIT 5) t);

Random query above works in three stages. First
stage is the random process in the “id” column (SELECT
id) with five limit data to retrieve (LIMIT 5). The
results of the first stage are five random “id” data.
Second stage then stored these “id” data in the alias table
“t”. In the third stage, five "id" data in the alias table "t"
are then used to retrieve complete data (all columns)
(SELECT *) related to each "id" (WHERE id).

C. Performance Evaluation
Performance evaluation is done by creating data sets

ranging from 10.000, 50.000, 100.000, 150.000, to
200.000 data. Each query method will be assigned the
same task which is to collect five data randomly from
each data set. For each data set, Select Random methods
will be tested five times. The speed of the query process
for each experiment will be recorded.

Query speed value for each experiment is obtained
based on the calculation of phpMyAdmin console. For
each query executed through this console, query
processing time will appear as shown in the following
figure:

Figure 2. Data Acquisition of SQL Query Processing Time

After conducting five experiments for each method in
each dataset, an evaluation of query speed performance
can be performed. For each method in each dataset, the
speed value will be totaled, then the average speed query
can be calculated using the following equation:

(2)

In the end, speed comparison results of each method
can be obtained. This result then used to conclude the
best method for Select Random query in SQL database.



INTEK Jurnal Penelitian. 2020, Volume 7 (1): 26-31 29

DOI : http://dx.doi.org/10.31963/intek.v7i1.1536

III. Results and Discussion
The experimental results in this research are divided

into two which are speed performance results of each
method for each dataset and performance comparison of
Select Random methods. Each of these results can be
explained as follows:

A. Query Speed Results of the Select Random Method
1. Select Random Results on 10.000 Data Rows

Speed performance results for 10.000 data rows are
shown in the following Table 1:

Table 1. Experimental Results of the Methods on 10.000 Data

10.000 data Processing Time (Seconds)
Num. of Trials NO-Rand SPO-Rand FCO-Rand

1 0.2725 0.189 0.0057
2 0.2635 0.1848 0.0068
3 0.2566 0.1976 0.0067
4 0.2838 0.1904 0.0058
5 0.2883 0.1849 0.0061

Average 0.27294 0.18934 0.00622

Table 1 above shows the speed of each Select
Random methods used to retrieve five data from a table
with 10.000 rows of data. The results shows that all
methods are fast enough where the speed still less than 1
second. Method with the highest speed is the Filtered
Column Order by Rand or FCO-Rand method.

2. Select Random Results on 50.000 Data Rows

Speed performance results for 50.000 data rows are
shown in the following Table 2:

Table 2. Experimental Results of the Methods on 50.000 Data

50.000 data Processing Time (Seconds)
Num. of Trials NO-Rand SPO-Rand FCO-Rand

1 1.3693 0.233 0.0604
2 1.1651 0.1826 0.0198
3 0.9505 0.243 0.0166
4 0.9347 0.1984 0.0188
5 0.9783 0.2779 0.0243

Average 1.07958 0.22698 0.02798

Table 2 shows that the usual random select method
(NO-Rand) starts to show poor performance when used

in table with 50.000 data, NO-Rand method has
exceeded one second. In contrast, two proposed methods
namely SPO-Rand and FCO-Rand still show good
performance, which is under 0.5 seconds.

3. Select Random Results on 100.000 Data Rows

Results of Random Select methods query in a table
with 100.000 data are shown in the following table:

Table 3. Experimental Results of the Methods on 100.000 Data

100.000 data Processing Time (Seconds)
Num. of Trials NO-Rand SPO-Rand FCO-Rand

1 3.0271 0.2102 0.0325
2 3.1651 0.2324 0.035
3 2.9405 0.2176 0.0323
4 3.1316 0.2803 0.0394
5 3.0133 0.2347 0.0367

Average 3.05552 0.23504 0.03518

Table 3 shows that NO-Rand method has been seen
working with slow speed. NO-Rand method takes 3.055
seconds to be processed while the FCO-Rand gets 0.035
seconds for the same task, this makes FCO-RAND
become the fastest method to retrieve five data randomly
from 100.000 data rows.

4. Select Random Results on 150.000 Data Rows

Performance of Select Random methods on 150.000
rows of data is shown in following table:

Table 4. Experimental Results of the Methods on 150.000 Data

150.000 data Processing Time (Seconds)
Num. of Trials NO-Rand SPO-Rand FCO-Rand

1 4.3569 0.2309 0.062
2 4.6136 0.246 0.0469
3 4.8985 0.2445 0.0805
4 4.4997 0.2513 0.0677
5 4.1664 0.2632 0.0731

Average 4.50702 0.24718 0.06604

It can be seen that the FCO-Rand method can still
work quickly, its only need 0.066 seconds to complete
the process. In contrasts, NO-Rand method become the
slowest method with 4.5 seconds for the same task.



INTEK Jurnal Penelitian. 2020, Volume 7 (1): 26-31 30

DOI : http://dx.doi.org/10.31963/intek.v7i1.1536

5. Select Random Results on 200.000 Data Rows

Results of Select Random methods on 200.000 rows
of data are shown in the following table:

Table 5. Experimental Results of the Methods on 200.000 Data

200.000 data Processing Time (Seconds)
Num. of Trials NO-Rand SPO-Rand FCO-Rand

1 7.6417 0.2561 0.0796
2 7.1837 0.2733 0.0782
3 6.3504 0.2686 0.0687
4 7.2713 0.2675 0.073
5 6.7289 0.2603 0.0712

Average 7.0352 0.26516 0.07414

In 200.000 rows of data experiment, the best Select
Random method is FCO-Rand that complete its process
only in 0.074 seconds, followed by SPO-Rand with
0.265 seconds and NO-Rand with 7.0352 seconds.

B. Speed Performance Comparison
Based on experiment conducted in the previous

section, the comparison of each method for each data set
can be described in Table 6 and Figure 3 as follows:

Table 6. Speed Comparison of Select Random Methods

Num. of
Data Rows

Average Processing Time (Seconds)
NO-Rand SPO-Rand FCO-Rand

10.000 0.273 0.189 0.006
50.000 1.080 0.227 0.028

100.000 3.056 0.235 0.035
150.000 4.507 0.247 0.066
200.000 7.035 0.265 0.074

Figure 3. Performance Comparison of Select Random
Methods

Table 6 and Figure 3 above show that the usual
random method, the NO-Rand method, can only work
well on table with small number of data or table with no
more than 10.000 data. If used in a larger table (50.000
or more data rows), the NO-Rand method can no longer
be recommended. In contrast, the proposed FCO-Rand
method can work consistently fast on all datasets. Even
for large table with 200.000 rows of data, the FCO-Rand
speed is consistently below 0.074 seconds as shown in
the following figure:

Figure 4. Method Speed Comparison of 200.000 Data

Figure 4 shows the significant speed difference
between the Normal Order by Rand (NO-Rand) method
and the proposed methods, namely Small Percentage
Order by Rand (SPO-Rand) and Filtered Column Order
by Rand (FCO-Rand). SPO-Rand is 6.77 seconds faster
than usual Select Random query / NO-Rand and FCO-
Rand method is 6.96 seconds faster than NO-Rand
method.

Based on these results, this research recommends
FCO-Rand Select Random method as the best method
for the task of retrieving random data on tables with
large amounts of data.

IV. Conclusion
This research proposes two optimization methods for

Select Random query in SQL database to solve speed
performance problem of usual Select Random query.
The first method is Small Percentage Order by Rand
(SPO-Rand) which works by eliminating a certain
amount of data randomly before taking the actual
random data. The second method is Filtered Column
Order by Rand (FCO-Rand) that use column
specifications approach. Based on the experiment that



INTEK Jurnal Penelitian. 2020, Volume 7 (1): 26-31 31

DOI : http://dx.doi.org/10.31963/intek.v7i1.1536

have been conducted, the two proposed methods have
fast and consistent performance. For the task of
retrieving five random data from 200.000 rows of data,
the usual Select Random method (NO-Rand) takes 7.035
seconds, SPO-Rand takes 0.265 seconds and FCO-Rand
only takes 0.074 seconds for the same task. This
research finally concludes and recommends the FCO-
Rand method for Select Random query in SQL database
tables with large number of data (big table). As
suggestion, further research can be done by increasing
the amount of experimental data to more than 200.000
data to test the consistency of proposed select random
methods.

Acknowledgement
This work is partially supported by IDalamat.com

which has provided dataset used for experiment and
analysis.

References
[1] N. Sangeeth and R. Rejimoan, “An Intelligent System for

Information Extraction from Relational Database using HMM,”
International Conference on Soft Computing Techniques and
Implementations, ICSCTI 2015, pp. 14–17, 2015.

[2] V. K. Myalapalli and P. R. Savarapu, “High Performance SQL
Finesse for Lucrative Programming,” Annual IEEE India
Conference (INDICON), 2014.

[3] J. L. Viescas, D. S. Steele, and B. G. Clothier, Effective SQL:
61 Specific Ways to Write Better SQL. Addison-Wesley, 2017.

[4] D. Saisanguansat and P. Jeatrakul, “Improving Optimization
Performance on PL/SQL,” International Conference on ICT and
Knowledge Engineering, pp. 1–6, 2017.

[5] H. Halimi and I. Jound, “Comparison of Performance between
Raw SQL and Eloquent ORM in Laravel,” Blekinge Institute of
Technology, 2016.

[6] M. N. Y. Utomo, A. E. Permanasari, E. Tungadi, and I.
Syamsuddin, “Determining Single Tuition Fee of Higher
Education in Indonesia: A Comparative Analysis of Data
Mining Classification Algorithms,” in Proceedings of 2017 4th
International Conference on New Media Studies, CONMEDIA
2017, pp. 113–117, 2017.

[7] S. Minukhin, V. Fedko, and D. Sitnikov, “SQL-On-Hadoop
Systems: Evaluting Performance of Polybase for Big Data
Processing,” International Scientific-Practical Conference
Problems of Infocommunications. Science and Technology (PIC
S&T), no. 1, pp. 591–594, 2018.

[8] J. Habimana, “Query Optimization Techniques - Tips For
Writing Efficient And Faster SQL Queries,” International
Journal of Scientific & Technology Research, vol. 4, no. 10, pp.
22–26, 2015.

[9] F. Mithani, S. Machchhar, and F. Jasdanwala, “A Novel
Approach for SQL Query Optimization,” International
Conference on Computational Intelligence and Computing
Research (ICCIC), 2016.

[10] V. Leis, K. Kundhikanjana, A. Kemper, and T. Neumann,
“Efficient Processing of Window Functions in Analytical SQL
Queries,” Proceedings of the VLDB Endowment, vol. 8, no. 10,
pp. 1058–1069, 2015.


